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ABSTRACT

An important problem in mobile ad-hoc wireless sensor net-
works is the localization of individual nodes, i.e., each node’s
awareness of its position relative to the network. In this pa-
per, we introduce a variant of this problem (directional local-
ization) where each node must be aware of both its position
and orientation relative to the network. This variant is es-
pecially relevant for the applications in which mobile nodes
in a sensor network are required to move in a collaborative
manner. Using global positioning systems for localization in
large scale sensor networks is not cost effective and may be
impractical in enclosed spaces. On the other hand, a set of
pre-existing anchors with globally known positions may not
always be available. To address these issues, in this work we
propose an algorithm for directional node localization based
on relative motion of neighboring nodes in an ad-hoc sensor
network without an infrastructure of global positioning sys-
tems (GPS), anchor points, or even mobile seeds with known
locations. Through simulation studies, we demonstrate that
our algorithm scales well for large numbers of nodes and
provides convergent localization over time, even with errors
introduced by motion actuators and distance measurements.
Furthermore, based on our localization algorithm, we intro-
duce mechanisms to preserve network formation during di-
rected mobility in mobile sensor networks. Our simulations
confirm that, in a number of realistic scenarios, our algo-
rithm provides for a mobile sensor network that is stable
over time irrespective of speed, while using only constant
storage per neighbor.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless Communication
General Terms: Algorithms.

Keywords: localization, mobility, sensor networks.
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1. INTRODUCTION

Wireless sensor networks are composed of hundreds, pos-
sibly thousands, of tiny low-cost devices - sensor nodes that
are capable of measuring various physical values, performing
computations and, most importantly, communicating with
each other and organizing themselves in order to coopera-
tively achieve a desired task [17].

An important aspect in most of the sensor networks ap-
plication is the localization of the individual nodes [9]. For
example, in aggregation networks, the node localization is
needed in order to construct topology-aware routing struc-
tures that will increase message efficiency and reliability, and
reduce transmission costs [8]. Broadly speaking, localiza-
tion in wireless sensor networks is the problem of individual
sensor’s awareness of their position relative to a coordinate
system common to the entire sensor network. In general, lo-
cation awareness empowers routing algorithms to determine
the most efficient message paths [12], or to achieve goals
such as optimal area coverage [14]. In routing applications,
it is sufficient for the nodes to know the positions of their
neighbors relative to a local coordinate system [6]. We call
this relative localization since the orientation of each sensor
is completely independent of the network coordinate system.
To support mobility applications, a node must move in a spe-
cific direction in a manner that is related to its neighbors.
We call directional localization the problem of determining
both the position and the orientation of each sensor in the
common coordinate system.

Solutions for various problems of interest in which the lo-
calization is an important aspect traditionally rely on two as-
sumptions: (1) the availability of global positioning systems
(GPS) — which requires additional hardware at additional
costs; and (2) the availability of a number of fixed-point ref-
erence nodes, or anchors, with globally known locations [7].
This is most commonly used in static networks [15] with re-
cent efforts on mobile networks where a small subset of the
moving nodes (seeds) are aware of their global positions [11].

Many applications require sensor network mobility in en-
vironments where GPS signals may not be available and
pre-existing infrastructures do not exist. Consider a fire
search mission inside a building where a set of mobile nodes
explore a floor with the goal to locate the source of fire.
The nodes move collaboratively, in a semi-rigid swarm. The



swarm follows a path such that it covers the area while tak-
ing temperature measurements. To tackle the problem of
localization management in such GPS-free settings in where
the nodes are mobile, a number of issues must be taken into
consideration. Most importantly, because of sensor mobil-
ity, the additive error in the estimated location can accrue
to fairly high values. This is a consequence of mechanical
errors in evaluating the direction and distance of movement,
which may occur in every measurement. The sources for this
type of errors are due to manufacturing defects or fluctua-
tions in the environment (e.g., wind). Thus, as the motion
evolves, the uncertainty on the position and direction of a
node increases.

The main contribution of this work is that it presents a
solution to the problem of directional localization in GPS-
free sensor networks with mobile nodes. We introduce a
novel, motion-based algorithm for node position and direc-
tion calculation with respect to each individual node’s local
coordinate system in mobile ad-hoc sensor networks, with-
out global positioning information. Our algorithm works
fast, in one step of the movement and does not require addi-
tional memory; in addition, it is not affected by cumulative
position errors. More specifically, we propose an algorithm
which

e provides directional neighbor localization in a network-
wide coordinate system,

e works under fairly large motion and distance measure-
ment errors,

e is unaffected by the speed of nodes,

e works for any network size,

e supports a stable network in mobility problems.

To experimentally validate our algorithm, we built a sim-
ulation framework. We analyzed the impact of the direc-
tion and distance errors on the location estimation errors,
and our experiments based on the simulation demonstrated
that the maximum localization error in a number of execu-
tional scenarios is bounded. We show how our algorithm can
be utilized to create stable and structured sensor networks
without an underlying infrastructure and without expensive
positioning devices.

Although our algorithm can be used to construct routing
topologies with various protocols, throughout this paper we
will focus on mobility aspects. In particular, we introduce
mechanisms for building a network of sensors to achieve a
common goal such as following a path in a semi-rigid forma-
tion. Our simulations confirm that the proposed techniques
preserve the network’s stability over time while providing
constant localization errors.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Our algorithm is described
in Section 3, while Section 4 describes its use in mobility
applications. Our experimental observations are presented
in Section 5 and Section 6 provides concluding remarks and
outlines directions for future research.

2. RELATED WORK

A majority of previous research works related to localiza-
tion problems have primarily focused on static sensor net-
works [15]. Recently, however, more attention has been paid
to mobile environments. Problems in mobile sensor net-
works have been investigated mainly in conjunction with a
particular positioning infrastructure (anchors, seed nodes,
beacons) or under random movement scenarios [6].

Low precision for close range and limited coverage (es-
pecially indoors) of GPS systems led researchers to explore
GPS-free localization for mobile nodes. One common tech-
nique used is to exploit wireless communication. Bulusu et
al. [3] use known reference points to send periodic beacon
messages. By receiving beacons from enough sources , nodes
can localize themselves. The accuracy of the localization de-
pends on the distance to the reference points. Priyantha et
al. [15] also use beacons for localization, but they assume
the real locations of the reference points are unknown. The
problem of calculating global geometry from local informa-
tion is proved to be NP-hard [16]. For static nodes, and
only using Euclidean distances, Badoiu et al. [1] propose a
constant factor, quasipolynomial-time approximation algo-
rithm. The algorithm requires complete graph information,
and is not practical for low processing power nodes.

In [6], relative localization in mobile sensor networks is ac-
complished through triangulation of neighbor nodes using a
common one-hop neighbor. The authors propose algorithms
for building a relative coordinate system based on a central
node, or a dense group of nodes called Location Reference
Group. Although this work is similar to ours in that it es-
timates positioning in a mobile environment without seed
nodes, its primary focus is on negotiating a relative coor-
dinate system for the entire network. While this solution
finds applications in routing protocols, it is not applicable
in mobility scenarios where directed motion is required.

In [11] a sequential Monte Carlo method is used to proba-
bilistically estimate the locations of nodes in a network with
a few seeds. Seeds are those nodes which know their pre-
cise location, through the use of GPS, for example. Due
to the model’s dependence on the previous estimates, the
location errors are cumulative and a re-sampling step must
be introduced. The re-sampling process requires each node
to collect as much as fifty samples before a good estimate
can be made. A method based on predictions is presented
in [13], where nodes in the network use a dead reckoning
model to estimate the movements of all other nodes. Posi-
tion information is adjusted for granularity so that distant
pairs of nodes maintain less accurate position information
than pairs which are closer to each other.

Concerning distance and motion detection error, Rayleigh
fading may introduce significant errors due to the motion of
the sensor in cases where signal strength is used for neigh-
bor distance estimation. This problem is studied in [2],
where the location estimation is based on power measure-
ment of signals received from two anchored beacons with
known locations. The authors explore how the speed of mo-
bile nodes detrimentally affects their localization accuracy.
The mechanisms introduced in [2] can complement our work
to improve the neighbor distance measurement error for high
speed sensors. Distance measurement methods are surveyed
in [4]. We use Time of Arrival (TOA) for neighbor dis-
tance measurements. The TOA method finds the distance
between a transmitter and a receiver through the use of one
way propagation time.

This paper introduces a directional localization algorithm
which exploits node mobility to calculate neighbor positions
without the use of any global information (e.g. GPS, anchor
points, and seed nodes). We present mechanisms to utilize
this algorithm in realistic mobility scenarios. Our methods
are deterministic and no past-position information is stored;
therefore there is no cumulative position estimation error.
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Figure 1: Typical movement of two nodes, with an-
gles and distances (a). An example non-rigid geome-
try, where nodes move parallel keeping the distances
exactly. Nodes can have infinite positions around
each other (b).

3. LOCALIZATION ALGORITHM

In this section, we present our GPS-free localization al-
gorithm. The algorithm works under the following assump-
tions:

e Each node has a compass pointing North (or any other
common reference direction)

e Nodes can measure the distance to their neighbors
using a well known range measurement method (e.g.
Time of Arrival (TOA) [4])

e Motion actuators allow each node to move a specific
distance in a specific direction (with respect to North)

e Actuator, compass and distance measurements are sub-
ject to errors caused by various real world disturbances

e Other than the above, no additional positioning equip-
ment or infrastructure is required.

First, we describe our core localization algorithm with two
neighbors, n1 and nz, that generates two possible relative
positions. Later we discuss our verification algorithm which
uses a common third neighbor to select the correct solution.

Core localization algorithm. The core localization algo-
rithm works on well defined rounds, where each round es-
sentially consists of three steps:
1. It begins with distance measurement between neighbors,
2. It continues with individual movement of the nodes,
3. It ends with an exchange between neighbors of direction
and distance values for that round.
Rounds are initiated by nodes whenever they need local-
ization. We do not require any other continuity or pattern
between rounds. We also do not assume anything about
the temporal duration of the rounds, however, we do as-
sume that the nodes do not change their directions within a
round.

A typical movement of two nodes ni and n2 in a round is
shown in Figure 1(a). At time t1, n1 is at position (zo,yo)
and n2 at (z2,y2), and the nodes measure the initial inter-

distance dq. Between time t; and t2, each node {n; | i = 1,2}
moves in a direction a; and covers a distance v;. At time t2,
the nodes, now at positions (z1,y1) and (x3,ys3), calculate
their inter-distance d2 and exchange v; and «; information.
After receiving all the information, each node selects itself
as the origin and calculates the position and direction of
the other node, in its local coordinate system. To solve the
equations in the local system of n1, we choose the position
(z0,yo0) of n1 as the origin and write:

xr1 = v1CcosSQy, y1 = visinag, (1)

T3 = T2 + V2 COS (2, Y3 = y2 + v2 sin ag, (2)

(w3 —21)* + (ys —y1)* = d3, x5 +ys =di.  (3)

Substituting equations (1) and (2) into equation (3), we get:
:L‘QA—l—yQB :C, (4)
with the appropriate definitions:

A = v2cosae — vy COSQ, B =wv2sinaz — v sinag,

1
C = 3 (d% —d? — 0¥ — 02 4 v, cos(ar — ag)) .

Substituting zz = (C' —y2B)/A and y2 = (C' — z2A)/B into
2 + 92 = d?, we get:

z3D — 2z E+ F =0, ysD —2yG+H=0, (5)

again with the appropriate definitions:

D = A? + B, E = AC, F=C?-diB?

G = BC, H=C?%—diA%

Note that the coefficient of 2 and y3 is the same in both
equations (5), namely, D.
Using (5), each variable solves independently to

E+E?-DF G+GF—DH
=~ b5 ~ w5 O
and solutions can be paired up by using equation (4), as
long as D # 0. In practice, one would compute either z2 or
y2 using (5) and deduce the other variable using (4). When
A = 0 but B # 0, one would compute z2 using (6), and
when A # 0 but B = 0, one would compute y2 using (6)
instead. If both A = B = 0, then D = 0 and we have an
exceptional configuration (further discussed below).

The core localization algorithm to calculate the position
of ny from n; is presented in Figure 2. Solving the equa-
tions, each node finds two possible positions for each of its
neighbors. Since only one of these solutions is realistic (the
other one is due to “symmetry”), each node has to complete
a verification step, this time using an additional common
neighbor (ns).

T2

Verification algorithm. In Figure 2, we give the algorithm
to verify a neighbor’s position using a third neighbor. After
solving equations (4) and (6) in the previous section, node
n1 has two position estimates {n]12 | 7 = 2,3} for each of
its neighbors n2 and ns. In order to find the positions and
direction, n; retrieves the inter-distance ds 3 of no and ns
from either one of these nodes, and simply finds the correct
pair of positions {nj12 | 7 = 2,3} that has a matching inter-
distance.



CORELOCALIZATION(n1, n2, v1, 1)

di < inter-distance(ni, n2)

: Move node n1 by v1 and a1

: d2 <+ inter-distance(ni, n2)

. Retrieve vo and as from no

: Calculate positions of ng using equations (4),(5) and (6)

S

VERIFICATION(NEIGHBORLIST NL)

1: for each neighbor pair (m,n) in NL do

2 if m and n are neighbors then

3: dm,n < measured inter-distance(m, n)

4: for each position pair {m?,nJ | 4,5 = 1,2} do

5: Compute Euclidean distance D between m’ and n/
6 if D = dm,n then

7 mark m* and nJ as exact positions

Figure 2: Core localization algorithm for n,: calcu-
lates two possible positions for n,. Verification algo-
rithm evaluates the position estimations of neighbor
nodes such that only 1 out of 4 position pairs vali-
dates the distance.

For rigid geometries and configurations without errors,
there can only be one pair verified. However, for configura-
tions with errors, we relax the algorithm slightly to select
the pair with the closest inter-distance value to da 3.

Exceptional configurations. The above localization algo-
rithm works for rigid geometries where two possible posi-
tions per neighbor are estimated. However, there exist ex-
ceptional movement configurations when the core algorithm
cannot find any meaningful results, namely equal parallel
movement and excessive error configurations.

FEqual parallel movement configurations occur for D = 0
in equation (6). This also implies that A = 0 and B = 0
since D = A? + B2 An example equal parallel movement
configuration is shown in Figure 1(b). In this case, the nodes
move in parallel and keep the exact same distances (d and v)
between them, so that node n2 can be anywhere on a circle
at a distance d away from node ni, and vice versa. The
geometry is not rigid and infinitely many possible solutions
exist for both neighbors.

The other exceptional configuration is the excessive error
configuration. The main sources of error in our algorithm oc-
cur due to distance, actuator and compass measurement in-
accuracies. When highly erroneous d, v and « values create a
non-rigid geometry, such that E?—DF < 0or GZ—DH < 0
in equation (6), our core algorithm cannot localize n; and
ng.

Although it is hard to avoid the above exceptional config-
urations, they can be detected easily within the core algo-
rithm. Once detected, nodes can skip that round and can
make necessary adjustments (e.g. random changes) to their
speed and direction to avoid the same ill-configuration in
the next round.

In this section, we presented the core localization algo-
rithm, verification algorithm and possible ill-configurations
where localization is not possible. In Section 5, we study
our algorithms behavior in various settings, such as ran-
dom movement, directed movement and error scenarios. We
also give practical evidence that the ill-configurations do not
dominate our algorithms behavior, and even though they do
occur, our algorithm successfully detects and recovers from
these configurations.

MovENODE(NoDE N, NEIGHBORLIST NL,
DIRECTIONVECTOR ﬁ7 INT k, RANGEFACTOR RF)
Ve—o
count < 0
for each localized neighbor n in NL do
QUN,p is the vector from N to n
‘7 — ‘7 + ﬁN,n
count < count + 1
if count < k then
RF «— RF /2
V «— (RF % range(N) * V + D)/(count + 1)
: Move node N by Vv

—
o

Figure 3: k-neighborhood mobility algorithm.

4. SENSOR NETWORK MOBILITY

Our directional localization algorithm is most useful in
mobile applications where the entire network must move in
a specific path in order to accomplish a goal. To analyze the
behavior of our localization algorithm in a realistic mobility
scenario, we adapt a mobility model based on the Reference
Point Group Mobility (RPGM) model [10]. While consid-
ering other mobility models, as surveyed in [5], we decided
to base our analysis on RPGM due to the generality of the
model. In the RPGM model, the random motion of the indi-
vidual nodes is modeled in relation to a randomly chosen di-
rectional motion of the entire group. Each node in the group
moves randomly around a fixed reference point and the en-
tire group of reference points moves along the group’s logical
center. Our localization algorithm computes locations and
orientations for nodes and their neighbors. In that respect,
we further generalize the RPGM model so as to make indi-
vidual sensors independent of the reference points. Further-
more, because our sensor network can maintain a semi-rigid
structure based solely on local positioning, it is unnecessary
for nodes to be aware of the group’s center and only the
destination point must be specified. It is possible to remove
the reference points because the individual random motion
within the group is contextualized by the random motion of
a node’s immediate (one-hop) neighbors. In that sense, the
neighbors represent the reference points of motion.

Our adapted mobility algorithm is presented in Figure 3.
The network moves with respect to a direction vector D. To
maintain a semi-rigid formation without disconnecting the
network, we impose a minimum neighbor count k that each
node strives to attain. This is a best-effort k-connected algo-
rithm where nodes attempt to maintain a neighbor distance
that is a fraction RF of their wireless range. RF is adjusted
dynamically with the number of neighbors so that nodes
with neighbors fewer than k stay closer while still moving
with the network. This avoids network partitioning. The
range(Node N) function returns the wireless range of the
given node. For brevity, we do not present the case where a
boundary is reached and a new direction is calculated. How-
ever, in our simulations we implement this as a ricochet off
the boundary surface.

The benefit of our approach is that while an initial direc-
tion of motion is specified for the group, the structure of
the network remains cohesive but independent. An example
application of this approach is a swarm of mobile sensors
which move in a general pattern with a specific goal. For
example, an oil-sensor network may move in a zig-zag pat-
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tern, with the goal to discover an oil spill and cover the
contaminated area once it is found. In this example, only
a virtual boundary must be specified and the network of
sensors will maintain sufficient proximity to communicate,
while covering the area.

The mobility algorithm presented in this section is a gen-
eral network movement algorithm that requires only local
position information. Because our localization algorithm re-
quires each node to communicate only with its direct neigh-
bors and there is no message propagation, the algorithm
scales up to any network size. As shown in the experiments
below, the localization error of the algorithm is only sensi-
tive to the node density of the network.

S. EXPERIMENTS

In this section, we first present the results for our local-
ization algorithm, free from measurement errors. After the
initial results, we introduce independent errors on angle and
distance measurements to simulate real world disturbances.
We present how our algorithm behaves under such errors,
and possible ill-configurations. Finally, we compare our lo-
calization algorithm to an absolute positioning algorithm in
random and directed mobility scenarios.

Experiments under ideal conditions. In this experiment
we simulate nodes randomly placed in a 100x100 area. Each
simulation is run for 100 rounds, and the results are aver-
aged. At each round, nodes perform a random walk with
random speed [0,5), random angle [0,27) and fixed radio
range of 6. Node density represents the number of nodes over
the total deployment area. As described in Section 3, our
localization algorithm requires two neighbors to accurately
find neighbor positions. Figure 4 displays the percentage
of nodes, whose positions are not calculated accurately for
different node densities. For small node densities, we ob-
serve that not all nodes can be localized. The reason is that
nodes do not have neighbors to calculate positions, or do
not have common neighbors. As we can see from Figure 4,
the percent of non-localized nodes approaches zero for den-
sities greater than 0.02. From this graph we can conclude
that our algorithm calculates almost all nodes positions for
dense networks, and introduces minor node localization fail-
ures, as small as 3%, for sparse networks.

Introducing measurement errors. Previously we presented
how our algorithm behaves under ideal conditions. Now we
relax these assumptions and introduce errors on distance
and angle measurements. In real world, measurements may
be quite inaccurate due to weather, terrain conditions and
equipment failures. To simulate these errors, we add uniform
random noise to all our measurements. For distance mea-
sures we add percent error relative to the measured value,
and for angle measures we add absolute percent error (per-
cent of 27) to the measured value. Introducing the errors
changes our algorithm’s behavior in one of two ways: (1)
the algorithm calculates the positions with limited accuracy;
or (2) excessive error configurations (defined in Section 3)
prevent the algorithm from localizing some of the nodes.
Figure 5 (left) shows the average position error of our al-
gorithm for different values of noise on angle and distance
measurements. The effects of excessive error configurations
on our algorithm appear in Figure 5 (right). From this figure
we can see that even with 30% noise on angle and distance
measures, which is a quite high error rate for real world
conditions, the number of non-localized nodes is at most
16%. Based on these results, we claim that our algorithm
provides sufficient node localization. We provide additional
support for this claim by testing our algorithm in random
and directed movement scenarios below.

Comparison with an absolute positioning algorithm.
In mobility scenarios we compare our localization algorithm
to an absolute positioning algorithm. In such an algorithm,
we assume that nodes know their initial positions in the
deployment area, thanks to an anchor point or any other
positioning infrastructure. We also assume that once nodes
get their initial position, they do not receive any additional
positioning information, relative or absolute. In order to
know their absolute positions, nodes keep track of their own
movements. By exchanging location information with im-
mediate neighbors, each node is able to keep track of the
positions of others. This scenario occurs in real world when
nodes are deployed from a known point and asked to explore
a possibly big area where they cannot keep a direct connec-
tion to the deployment point. Note that our algorithm, as
described in Section 3, does not use any absolute position
information.

We simulate two different mobility scenarios. The first
is based on random movement, where 100 nodes with fixed
radio range 15 can cover a distance of at most 5 units per
round. The second scenario is the directed movement de-
scribed in Section 4. Nodes sweep the area in a zig-zag man-
ner, with radio range 5 and maximum per-round distance 3.
An example trajectory of the nodes in the directed move-
ment scenario is shown in Figure 8. There is no global path
information available, rather, the nodes detect the bound-
aries of the environment and make movement decisions as a
response to these environmental readings.

In Figure 6 we show the average errors for both algorithms
over increasing number of rounds, for two different uniform
random noise levels: high and low, in random motion (top)
and directed motion (bottom) scenarios. High noise level is
up to £30% of distance measurements and up to +27/10
of angle measurements. Low noise level is up to £3% of
distance measurements and up to +27/100 of angle mea-
surements. Since our algorithm calculates distances within
each round and does not use any cumulative data, the er-
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Figure 6: Mean and standard deviation of position
error vs. number of rounds for our algorithm and
the absolute positioning algorithm, using different
levels of noise. Random movement (top), directed
movement (bottom).

ror of the algorithm is nearly constant over the number of
rounds, for both scenarios. Although the absolute position-
ing algorithm starts with a low error value (more apparent
in random motion), small measurement errors accumulate
over each round and cause an ever-increasing error. The re-
sults of our simulations for random and directed movement
are summarized in Table 1. The mean error of our algorithm
is as much as 5 times lower than the mean error of the ab-
solute positioning algorithm. The high values of standard
deviations in the absolute positioning algorithm reflect on
the effects of accumulative errors and show that it is not a
robust solution for high noise scenarios. On the other hand,
our localization algorithm provides consistent behavior in
the above-mentioned scenarios.

In order to evaluate the effects of movement speed and

Our alg. Abs. pos. alg.
Movement | Noise | Mean | Stdev | Mean | Stdev
Random low 0.71 0.69 0.86 0.55
high 3.55 2.23 6.98 4.78
Directed low 0.08 0.08 0.19 0.11
high 0.49 0.30 2.85 1.65

Table 1: Mean and standard deviation errors of our
algorithm and the absolute positioning algorithm, as
shown in Figure 6.
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Figure 7: Mean and standard deviation of position
error vs. speed of nodes with a wireless range of 10
units and speed measured in units per round.

wireless range we tested our algorithm under high noise,
with a fixed wireless range (10) and variable speed values.
We increased the speed only up to the wireless range dis-
tance per unit time. In any sensor network scenario, if a
node moves by a distance grater than its wireless range in
a unit time, it is highly probable that its neighborhood will
change at each step, which would make it impossible to lo-
calize. We can see in Figure 7 that the localization error of
our algorithm is nearly constant for increasing node speeds.
The maximum speed supported by our algorithm is the wire-
less range distance per unit time which is 10 units per round
in this experiments.

In Figures 9 and 10 we present the snapshots of the sim-
ulations of the absolute positioning algorithm and our al-
gorithm, respectively, performing a zig-zag directed move-
ment (as in Figure 8) under heavy noise. Both simulations
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Figure 8: Directed trajectory of nodes performing
zig-zag movement.

use the same movement algorithm as described in Section 4.
Because of the cumulative errors, the absolute positioning
algorithm is not capable of maintaining the topology of the
network and becomes disorganized. On the other hand, our
algorithm maintains connectivity at all times while forming
a nice semi-rigid topology. The results in Figures 6 and 10
also support our claim that even under high noise settings,
ill-configurations do not deteriorate our algorithm’s behav-
ior; effects of these are constant through rounds. As seen
in Figure 10, occasionally a few nodes (two in this case) be-
come disconnected from the network while running our algo-
rithm. This happens when nodes near the network border
cannot be localized. Although the number of these nodes
is small, they can be further controlled by forcing stricter
k-neighborhood rules.

In this section, we presented simulation results for our
algorithm under ideal conditions as well as with simulated
real world error and noise conditions. For ideal conditions,
we find our algorithm quite accurate. Even under heavy
noise and measurement errors, the algorithm can keep a near
constant error bound over time.

6. CONCLUSION AND FUTURE WORK

To the best of our knowledge, our localization algorithm is
the first GPS-free work on mobile nodes that only uses wire-
less communication properties and a compass to find posi-
tional and directional locations of neighbor nodes. We pro-
pose a straightforward and robust algorithm that requires
only a single round of node movement to localize all neigh-
bor nodes. Our algorithm only requires constant storage
per one-hop neighbor during localization. Therefore, it is
immune to common location errors accumulated through
time, without any infrastructural support (eg. GPS, an-
chor point). The self-localization ability of our algorithm
makes it cost effective and easy to deploy to areas where no
global positioning infrastructure is available, such as indoor
or disaster areas.

We are also exploring future applications for our algo-
rithm. One area where our algorithm will contribute is when
a stricter control of the geometric formation of the network is
needed for mobility and coverage applications. This is useful
for applications such as increased coverage during mobility,
surrounding or covering a target area.
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Figure 9: Snapshots of absolute positioning algorithm performing directed motion in Figure 8.
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Figure 10: Snapshots of our localization algorithm performing directed motion in Figure 8.



